Imperial College
London

Lecture 11

Finite State Machines

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 1

Lecture Objectives

¢ Tolearn how to analyse a state machine

¢ To learn how to design a state machine to meet specific objectives
¢ Learn how to specify a FSM in SystemVerilog

¢ How to combine a FSM with a counter to control state transition

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 2

Synchronous State Machines

¢ Synchronous State Machine (also called Finite State Machine FSM)

Mealy FSM

. M next) k next
iInputs + state

outputs

- The current state is defined by the register contents
- Register has k flipflops = 2k possible states
— The state only ever changes on CLOCKT
- We stay in a state for an exact number of CLOCK cycles
- The state is the only memory of the past
— Output can depend on both current state and current input — Mealy FSM

Rules:
0 Never mess around with the clock signal
0 Always initialise the FSM to a known initial state on reset or power ON.

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 3

Simple FSM - Moore FSM

CLK

-
Tk K N
. state , state | output |’

inputs

¢ Three parts:
< State registers
<+ Next state logic
< Output logic
¢ Moore FSM - special case of Mealy FSM, output depends only on current state

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 4

Analysing a State Machine

State Table:

¢ Truth table for the combinational
logic:

- One row per state: # flipflops = 2
rows

- One column per input combination:
m input signals = 2™ columns

- Each cell specifies the next state
and the output signals during the
current state

- for clarity, we separate the two
using a /

A Next'state ./_ N
CLOCK Q 1 = = Y
> C1 \ =i
NSO ¥ —F so | |
o — |
NS1 D S1 & LL- . | NS
RN _
Current state
NSI.NSO/Y
S1.S0 A=0 A=1
00 11/0 10/1
01 11/0 10/0
10 11/1 10/0
11 01/1 01/1

PYKC 18 Nov 2025

EE2 Circuits & Systems

Lecture 11 Slide 5

Drawing the State Diagram

¢ Split state table into two parts: next state table and output table

Next State: NS1:0

NSLNSO/Y o <10 | A0 A=l
v1.S0 =0 A=l] 0 3 >
00 11/0 10/1 1 3 2
01 11/0 1000 2 3 2
10 11/1 100 3 1 1
11 01/1 01/1
& Transition arrows are marked with Boolean \
expressions saying when they occur Output Signal: /Y
- Every mp_)ut c_:omblnatlon has exactly S1:0 | A=0 A=l
one destination.
- Unlabelled arrows denote unconditional 0 /0 /1 Y=A
transitions 1 /0 /0 Y=0
¢ Output Signals: Boolean expressions 2 /1 /0 Y=IA
within each state 3 /1 /1 Y=1

PYKC 18 Nov 2025 EE2 Circuits & Systems

Lecture 11 Slide 6

Timing Diagram

¢ State machine behaviour is entirely determined by: A
- The initial state
- The input signal waveforms

¢ State Sequence: A
- Determine this first. Next state

depends on input values just before

CLOCK
CLOCK | T I A I)
A {’\= |'>'= ||"\' ;:
|
State: S1:0 | 0(:1 3 | 1% 2 C:{ 3 | 19 3 |
: | | | |
¢ Output Signals: [

Defined by Boolean expressions within each state.
If all the expressions are constant O or 1 then outputs only ever change on

clock . (Moore machine)
If any expressions involve the inputs (e.g. Y=A) then it is possible for the

outputs to change in the middle of a state. (Mealy machine)

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 7

Self-Transitions

& We can omit transitions from a
state to itself
- Aim: to save clutter on the
diagram

& The state machine remains in its
current state if none of the
transition-arrow conditions are
satisfied

- From state 2, we go to state 3 if
A occurs, otherwise we remain
in state 2

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 8

Output Expressions on Arrows

¢ It may make the diagram clearer to put
output expressions on the arrows instead of

within the state circles:

- Useful if the same Boolean expression
determines both the next state and the
output signals

- For each state, the output specification must
be either inside the circle or else on every
emitted arrow

- If self transitions are omitted, we must declare
default values for the outputs

Output: /Y Outputs written on an arrow apply to the state
Default: Y=0 emitting the arrow.

» Outputs still apply for the entire time spent in a
state

» This does not affect the Moore/Mealy distinction

« This is a notation change only

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 9

Example 1: Divide by 3 FSM (Moore)

module div3FSM (
input ogic clk,
input ogic rst,
output logic out

typedef enum {IDLE, S1, S2} my_state;

state current_state, next_state; Default: OUT =0

S2

always_ff @(posedge clk, posedge rst)
if (rst) current_state <= IDLE;
else current_state <= next_state;

always_comb
case (current_state (:LF(
IDLE: next_state S1; curre
S1: next_state = S2; # state
S4r next_state IDLE;
default: next_state = IDLE;
endcase

outputs

assign out = (current_state == IDLE);
endmodule

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 10

Example 2: Design a Noise Pulse Eliminator (1)

¢ Design Problem: Noise elimination circuit
- We want to remove pulses that last only one clock cycle

IN I 1 L L L
OUT [ideal] | |
(1)
¢ Use letters a,b,... to label states; we
choose numbers later. @)
¢ Decide what action to take in each
state for each of the possible input
conditions.
¢ Use a Moore machine (i.e. output is 3)

constant in each state). Easier to
design but needs more states & adds

output delay. “

N

a—=...00
b= ...001
e=s.. 1l

... 110

PYKC 18 Nov 2025 EE2 Circuits & Systems

Lecture 11 Slide 11

Design a Noise Pulse Eliminator (2)

1. If IN goes high for two (or more) clock cycles then OUT must go high, whereas if it goes
high for only one clock cycle then OUT stays low. It follows that the two histories “IN low
for ages” and “IN low for ages then high for one clock” are different because if IN is high
for the next clock we need different outputs. Hence we need to introduce state b.

2. If IN goes high for one clock and then goes low again, we can forget it ever changed at all.
This glitch on IN will not affect any of our future actions and so we can just return to state

a.
If on the other hand we are in state b and IN stays high for a second clock cycle, then the
output must change. It follows that we need a new state, c.

3. The need for state d is exactly the same as for state b earlier. We reach state d at the end
of an output pulse when IN has returned low for one clock cycle. We don’t change OUT
yet because it might be a false alarm.

4. If we are in state d and IN remains low for a second clock cycle, then it really is the end of
the pulse and OUT must go low. We can forget the pulse ever existed and just return to

state a.
Each state represents a particular history that we need to

distinguish from the others:
state a: IN=0 for >1 clock state b: IN=1 for 1 clock
state c: IN=1 for >1 clock state d: IN=0 for 1 clock

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 12

Eliminator design in SystemVerilog

module eliminator (

0 1

input logic clk,

input logic rst,

(3 (3 o
input logic in, 1
output logic out 0 1 6
o

typedef enum {S_A, S_B, S_C, S_D} my_state;
: te current_state, next_state; always_ff @(posedge clk)

if (rst) current_state <= S_A;
else current_state <= next_state;

always_comb
case (current_state
S_A: if (in==1'b1l next_state = S_B;

else next_state current_state; always_comb

S if (in==1'bl next_state Sl case (current_state
else next_state = S_A; S_A: out = 1'b0;

SR if (in==1'b0@ next_state = S_D; S_B: out = 1'b0;
else next_state current_state; S C: out = 1'b1;

S_D: if (in==1'b1l next_state = S_C; :

else next_state S_A; 5_D: out = 1°b1;

default: next_state = S_A; default: out = 1'b0;
endcase endcase

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 13

Example 3 — A pulse generator

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clock.

‘ IDLE | ‘ WAIT_LOW)’(IDLE)‘ —
IN

IN_HIGH

¢ Needs THREE states (not two).

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 14

Pulse Generator in SV

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clk.

module pulse_gen
input logic clk,
input logic rst,
input logic in,
output logic pulse

typedef enum {IDLE, IN_HIGH, WAIT_LOW} my_state;
my_state current_state, next_state;

always_ff @(posedge clk)
if (rst) current_state <= IDLE;
else current_state <= next_state;

always_comb
case (current_state
IDLE: if (in==1'b1 next_state = IN_HIGH;
else next_state current_state;
IN_HIGH: if (in==1'bl next_state = WAIT_LOW; IDLE: pulse
else next_state = IDLE; IN_HIGH: pulse
WAIT_LOW: if (in==1'b0 next_state = IDLE; WAIT LOW: pulse
else next_state current_state; =
default: next_state = IDLE; default: pulse
endcase endcase

always_comb
case (current_state

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 15

Example 4: delay module (1)

* o

1-cycle pulse on time_out.

¢ The external port interface for this module is shown below. We assume that n is a 7-bit
number, or a maximum of 127 sysclk cycles delay.

delay.sv

K
time_out

trigger
rst

— Dok

Here is a very useful module that combines a FSM with a counter.
It detects the rising edge on trigger, then wait (delay) for n clk cycles before producing a

module delay #(

) (

imeter WIDTH = 7

input logic cLic;
input Llogic rst,
input logic trigger,
input logic [WIDTH-1:0 k,
output logic time_out

logic [WIDTH-1:0] count = {WIDTH{1'b@}};

typedef enum {IDLE, COUNTING, TIME_OUT, WAIT_LOW} my_state;
my_state current_state, next_state;

PYKC 18 Nov 2025

EE2 Circuits & Systems Lecture 11 Slide 16

Example 4: delay module (2)

output: time_out

trigger

(count = 0)

trigger

always_comb

case (current_state

IDLE:

COUNTING:

TIME_OUT:

WAIT_LOW:

if (trigger==1'b1l) next_state = COUNTING;

else next_state = current_state;

if (count=={WIDTH{1'b@}}) next_state = TIME_OUT;
else next_state = current_state;

if (trigger==1'bl) next_state = WAIT_LOW;

else next_state = IDLE;

if (trigger==1'b@) next_state = IDLE;

else next_state = current_state;

default: next_state = IDLE;

endcase

always_comb

case (current_state

IDLE:
COUNTING:
TIME_OUT:
WAIT_LOW:
default:
endcase

time_out

time_out
time_out
time_out
time_out

PYKC 18 Nov 2025

EE2 Circuits & Systems

Lecture 11 Slide 17

Example 4: delay module (3)

always_ff @(posedge clk)
if (rst | trigger | count=={WIDTH{1'b@}}) count <= k - 1'b1;

else count <= count - 1'bl;

always_ff @(posedge clk)
if (rst) current_state <= IDLE;
else current_state <= next_state;

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 18

